# Evaluate ((3)^3)/3-9*3-(((1)^3)/3-9)

(3)33-9⋅3-((1)33-9)
Find the common denominator.
Write -9⋅3 as a fraction with denominator 1.
(3)33+-9⋅31-((1)33-9)
Multiply -9⋅31 by 33.
(3)33+-9⋅31⋅33-((1)33-9)
Multiply -9⋅31 and 33.
(3)33+-9⋅3⋅33-((1)33-9)
Write -((1)33-9) as a fraction with denominator 1.
(3)33+-9⋅3⋅33+-((1)33-9)1
Multiply -((1)33-9)1 by 33.
(3)33+-9⋅3⋅33+-((1)33-9)1⋅33
Multiply -((1)33-9)1 and 33.
(3)33+-9⋅3⋅33+-((1)33-9)⋅33
(3)33+-9⋅3⋅33+-((1)33-9)⋅33
Combine fractions with similar denominators.
(3)3-9⋅3⋅3-((1)33-9)⋅33
Simplify the expression.
One to any power is one.
(3)3-9⋅3⋅3-(13-9)⋅33
Multiply -9 by 3.
(3)3-27⋅3-(13-9)⋅33
Multiply -27 by 3.
(3)3-81-(13-9)⋅33
(3)3-81-(13-9)⋅33
To write -9 as a fraction with a common denominator, multiply by 33.
(3)3-81-(13-9⋅33)⋅33
Combine -9 and 33.
(3)3-81-(13+-9⋅33)⋅33
Combine the numerators over the common denominator.
(3)3-81-1-9⋅33⋅33
Simplify the numerator.
Multiply -9 by 3.
(3)3-81-1-273⋅33
Subtract 27 from 1.
(3)3-81–263⋅33
(3)3-81–263⋅33
Move the negative in front of the fraction.
(3)3-81–263⋅33
Multiply –263.
Multiply -1 by -1.
(3)3-81+1(263)⋅33
Multiply 263 by 1.
(3)3-81+263⋅33
(3)3-81+263⋅33
Cancel the common factor of 3.
Cancel the common factor.
(3)3-81+263⋅33
Rewrite the expression.
(3)3-81+263
(3)3-81+263
Simplify the numerator.
Raise 3 to the power of 3.
27-81+263
Subtract 81 from 27.
-54+263
Add -54 and 26.
-283
-283
Move the negative in front of the fraction.
-283
The result can be shown in multiple forms.
Exact Form:
-283
Decimal Form:
-9.3‾
Mixed Number Form:
-913
Evaluate ((3)^3)/3-9*3-(((1)^3)/3-9)

### Solving MATH problems

We can solve all math problems. Get help on the web or with our math app

Scroll to top