# Factor 6a^3b^3-11a^2b^2-7ab

6a3b3-11a2b2-7ab
Factor ab out of 6a3b3-11a2b2-7ab.
Factor ab out of 6a3b3.
ab(6a2b2)-11a2b2-7ab
Factor ab out of -11a2b2.
ab(6a2b2)+ab(-11ab)-7ab
Factor ab out of -7ab.
ab(6a2b2)+ab(-11ab)+ab(-7)
Factor ab out of ab(6a2b2)+ab(-11ab).
ab(6a2b2-11ab)+ab(-7)
Factor ab out of ab(6a2b2-11ab)+ab(-7).
ab(6a2b2-11ab-7)
ab(6a2b2-11ab-7)
Rewrite a2b2 as (ab)2.
ab(6(ab)2-11(ab)-7)
Let u=ab. Substitute u for all occurrences of ab.
ab(6u2-11u-7)
Factor by grouping.
For a polynomial of the form ax2+bx+c, rewrite the middle term as a sum of two terms whose product is a⋅c=6⋅-7=-42 and whose sum is b=-11.
Factor -11 out of -11u.
ab(6u2-11(u)-7)
Rewrite -11 as 3 plus -14
ab(6u2+(3-14)u-7)
Apply the distributive property.
ab(6u2+3u-14u-7)
ab(6u2+3u-14u-7)
Factor out the greatest common factor from each group.
Group the first two terms and the last two terms.
ab((6u2+3u)-14u-7)
Factor out the greatest common factor (GCF) from each group.
ab(3u(2u+1)-7(2u+1))
ab(3u(2u+1)-7(2u+1))
Factor the polynomial by factoring out the greatest common factor, 2u+1.
ab((2u+1)(3u-7))
ab((2u+1)(3u-7))
Replace all occurrences of u with ab.
ab((2(ab)+1)(3(ab)-7))
Factor.
Simplify.
Remove parentheses.
ab((2ab+1)(3(ab)-7))
Remove parentheses.
ab((2ab+1)(3ab-7))
ab((2ab+1)(3ab-7))
Remove unnecessary parentheses.
ab(2ab+1)(3ab-7)
ab(2ab+1)(3ab-7)
Factor 6a^3b^3-11a^2b^2-7ab

### Solving MATH problems

We can solve all math problems. Get help on the web or with our math app

Scroll to top