# Find the Variance 1483 , 1483 , 1450 , 1381 , 1283 , 1260 , 1250 , 1227

1483 , 1483 , 1450 , 1381 , 1283 , 1260 , 1250 , 1227
The mean of a set of numbers is the sum divided by the number of terms.
x&OverBar;=1483+1483+1450+1381+1283+1260+1250+12278
Simplify the numerator.
x&OverBar;=2966+1450+1381+1283+1260+1250+12278
x&OverBar;=4416+1381+1283+1260+1250+12278
x&OverBar;=5797+1283+1260+1250+12278
x&OverBar;=7080+1260+1250+12278
x&OverBar;=8340+1250+12278
x&OverBar;=9590+12278
x&OverBar;=108178
x&OverBar;=108178
Divide.
x&OverBar;=1352.125
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
x&OverBar;=1352.1
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=∑i=1n⁡(xi-xavg)2n-1
Set up the formula for variance for this set of numbers.
s=(1483-1352.1)2+(1483-1352.1)2+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Simplify the result.
Simplify the numerator.
Subtract 1352.1 from 1483.
s=130.92+(1483-1352.1)2+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise 130.9 to the power of 2.
s=17134.81+(1483-1352.1)2+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1483.
s=17134.81+130.92+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise 130.9 to the power of 2.
s=17134.81+17134.81+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1450.
s=17134.81+17134.81+97.92+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise 97.9 to the power of 2.
s=17134.81+17134.81+9584.41+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1381.
s=17134.81+17134.81+9584.41+28.92+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise 28.9 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1283.
s=17134.81+17134.81+9584.41+835.21+(-69.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise -69.1 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+4774.81+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1260.
s=17134.81+17134.81+9584.41+835.21+4774.81+(-92.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise -92.1 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1250.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+(-102.1)2+(1227-1352.1)28-1
Raise -102.1 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+10424.41+(1227-1352.1)28-1
Subtract 1352.1 from 1227.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+10424.41+(-125.1)28-1
Raise -125.1 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+10424.41+15650.018-1
s=34269.62+9584.41+835.21+4774.81+8482.41+10424.41+15650.018-1
s=43854.03+835.21+4774.81+8482.41+10424.41+15650.018-1
s=44689.24+4774.81+8482.41+10424.41+15650.018-1
s=49464.05+8482.41+10424.41+15650.018-1
s=57946.46+10424.41+15650.018-1
s=68370.87+15650.018-1
s=84020.888-1
s=84020.888-1
Simplify the expression.
Subtract 1 from 8.
s=84020.887
Divide 84020.88 by 7.
s=12002.98285714
s=12002.98285714
s=12002.98285714
Approximate the result.
s2≈12002.9829
Find the Variance 1483 , 1483 , 1450 , 1381 , 1283 , 1260 , 1250 , 1227

### Solving MATH problems

We can solve all math problems. Get help on the web or with our math app

Scroll to top