1483 , 1483 , 1450 , 1381 , 1283 , 1260 , 1250 , 1227
The mean of a set of numbers is the sum divided by the number of terms.
x‾=1483+1483+1450+1381+1283+1260+1250+12278
Add 1483 and 1483.
x‾=2966+1450+1381+1283+1260+1250+12278
Add 2966 and 1450.
x‾=4416+1381+1283+1260+1250+12278
Add 4416 and 1381.
x‾=5797+1283+1260+1250+12278
Add 5797 and 1283.
x‾=7080+1260+1250+12278
Add 7080 and 1260.
x‾=8340+1250+12278
Add 8340 and 1250.
x‾=9590+12278
Add 9590 and 1227.
x‾=108178
x‾=108178
Divide.
x‾=1352.125
The mean should be rounded to one more decimal place than the original data. If the original data were mixed, round to one decimal place more than the least precise.
x‾=1352.1
Set up the formula for variance. The variance of a set of values is a measure of the spread of its values.
s2=∑i=1n(xi-xavg)2n-1
Set up the formula for variance for this set of numbers.
s=(1483-1352.1)2+(1483-1352.1)2+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Simplify the numerator.
Subtract 1352.1 from 1483.
s=130.92+(1483-1352.1)2+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise 130.9 to the power of 2.
s=17134.81+(1483-1352.1)2+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1483.
s=17134.81+130.92+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise 130.9 to the power of 2.
s=17134.81+17134.81+(1450-1352.1)2+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1450.
s=17134.81+17134.81+97.92+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise 97.9 to the power of 2.
s=17134.81+17134.81+9584.41+(1381-1352.1)2+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1381.
s=17134.81+17134.81+9584.41+28.92+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise 28.9 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+(1283-1352.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1283.
s=17134.81+17134.81+9584.41+835.21+(-69.1)2+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise -69.1 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+4774.81+(1260-1352.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1260.
s=17134.81+17134.81+9584.41+835.21+4774.81+(-92.1)2+(1250-1352.1)2+(1227-1352.1)28-1
Raise -92.1 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+(1250-1352.1)2+(1227-1352.1)28-1
Subtract 1352.1 from 1250.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+(-102.1)2+(1227-1352.1)28-1
Raise -102.1 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+10424.41+(1227-1352.1)28-1
Subtract 1352.1 from 1227.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+10424.41+(-125.1)28-1
Raise -125.1 to the power of 2.
s=17134.81+17134.81+9584.41+835.21+4774.81+8482.41+10424.41+15650.018-1
Add 17134.81 and 17134.81.
s=34269.62+9584.41+835.21+4774.81+8482.41+10424.41+15650.018-1
Add 34269.62 and 9584.41.
s=43854.03+835.21+4774.81+8482.41+10424.41+15650.018-1
Add 43854.03 and 835.21.
s=44689.24+4774.81+8482.41+10424.41+15650.018-1
Add 44689.24 and 4774.81.
s=49464.05+8482.41+10424.41+15650.018-1
Add 49464.05 and 8482.41.
s=57946.46+10424.41+15650.018-1
Add 57946.46 and 10424.41.
s=68370.87+15650.018-1
Add 68370.87 and 15650.01.
s=84020.888-1
s=84020.888-1
Simplify the expression.
Subtract 1 from 8.
s=84020.887
Divide 84020.88 by 7.
s=12002.98285714
s=12002.98285714
s=12002.98285714
Approximate the result.
s2≈12002.9829
Find the Variance 1483 , 1483 , 1450 , 1381 , 1283 , 1260 , 1250 , 1227