# Simplify ((3a^7b^7)/(6a^5))^3 (3a7b76a5)3
Cancel the common factor of 3 and 6.
Factor 3 out of 3a7b7.
(3(a7b7)6a5)3
Cancel the common factors.
Factor 3 out of 6a5.
(3(a7b7)3(2a5))3
Cancel the common factor.
(3(a7b7)3(2a5))3
Rewrite the expression.
(a7b72a5)3
(a7b72a5)3
(a7b72a5)3
Cancel the common factor of a7 and a5.
Factor a5 out of a7b7.
(a5(a2b7)2a5)3
Cancel the common factors.
Factor a5 out of 2a5.
(a5(a2b7)a5⋅2)3
Cancel the common factor.
(a5(a2b7)a5⋅2)3
Rewrite the expression.
(a2b72)3
(a2b72)3
(a2b72)3
Use the power rule (ab)n=anbn to distribute the exponent.
Apply the product rule to a2b72.
(a2b7)323
Apply the product rule to a2b7.
(a2)3(b7)323
(a2)3(b7)323
Simplify the numerator.
Multiply the exponents in (a2)3.
Apply the power rule and multiply exponents, (am)n=amn.
a2⋅3(b7)323
Multiply 2 by 3.
a6(b7)323
a6(b7)323
Multiply the exponents in (b7)3.
Apply the power rule and multiply exponents, (am)n=amn.
a6b7⋅323
Multiply 7 by 3.
a6b2123
a6b2123
a6b2123
Raise 2 to the power of 3.
a6b218
Simplify ((3a^7b^7)/(6a^5))^3

### Solving MATH problems

We can solve all math problems. Get help on the web or with our math app

Scroll to top