# Simplify ((3y^3)(2y^2)^2)÷((y^4)^3)

(3y3)(2y2)2÷(y4)3
Rewrite the division as a fraction.
(3y3)(2y2)2(y4)3
Simplify the numerator.
Apply the product rule to 2y2.
3y3⋅22(y2)2(y4)3
Raise 2 to the power of 2.
3y3⋅4(y2)2(y4)3
Multiply the exponents in (y2)2.
Apply the power rule and multiply exponents, (am)n=amn.
3y3⋅4y2⋅2(y4)3
Multiply 2 by 2.
3y3⋅4y4(y4)3
3y3⋅4y4(y4)3
3y3⋅4y4(y4)3
Multiply the exponents in (y4)3.
Apply the power rule and multiply exponents, (am)n=amn.
3y3⋅4y4y4⋅3
Multiply 4 by 3.
3y3⋅4y4y12
3y3⋅4y4y12
Simplify the numerator.
Multiply 4 by 3.
12y3y4y12
Multiply y3 by y4 by adding the exponents.
Move y4.
12(y4y3)y12
Use the power rule aman=am+n to combine exponents.
12y4+3y12
12y7y12
12y7y12
12y7y12
Cancel the common factor of y7 and y12.
Factor y7 out of 12y7.
y7⋅12y12
Cancel the common factors.
Factor y7 out of y12.
y7⋅12y7y5
Cancel the common factor.
y7⋅12y7y5
Rewrite the expression.
12y5
12y5
12y5
Simplify ((3y^3)(2y^2)^2)÷((y^4)^3)

### Solving MATH problems

We can solve all math problems. Get help on the web or with our math app

Scroll to top