Solve for G 0.000000011233=(G(53.8(50)))/((4.0)^2)

Math
0.00000001=G(53.8(50))(4)2
Rewrite the equation as G(53.8(50))(4)2=0.00000001.
G(53.8(50))(4)2=0.00000001
Multiply both sides of the equation by (4)253.8(50).
(4)253.8(50)⋅G(53.8(50))(4)2=(4)253.8(50)⋅0.00000001
Simplify both sides of the equation.
Tap for more steps…
Simplify (4)253.8(50)⋅G(53.8(50))(4)2.
Tap for more steps…
Raise 4 to the power of 2.
1653.8(50)⋅G(53.8(50))(4)2=(4)253.8(50)⋅0.00000001
Multiply 53.8 by 50.
162690⋅G(53.8(50))(4)2=(4)253.8(50)⋅0.00000001
Multiply 50 by 53.8.
162690⋅G⋅2690(4)2=(4)253.8(50)⋅0.00000001
Reduce the expression by cancelling the common factors.
Tap for more steps…
Raise 4 to the power of 2.
162690⋅G⋅269016=(4)253.8(50)⋅0.00000001
Cancel the common factor of 16.
Tap for more steps…
Cancel the common factor.
162690⋅G⋅269016=(4)253.8(50)⋅0.00000001
Rewrite the expression.
12690⋅(G⋅2690)=(4)253.8(50)⋅0.00000001
12690⋅(G⋅2690)=(4)253.8(50)⋅0.00000001
Cancel the common factor of 2690.
Tap for more steps…
Factor 2690 out of G⋅2690.
12690⋅(2690⋅G)=(4)253.8(50)⋅0.00000001
Cancel the common factor.
12690⋅(2690⋅G)=(4)253.8(50)⋅0.00000001
Rewrite the expression.
G=(4)253.8(50)⋅0.00000001
G=(4)253.8(50)⋅0.00000001
G=(4)253.8(50)⋅0.00000001
G=(4)253.8(50)⋅0.00000001
Simplify (4)253.8(50)⋅0.00000001.
Tap for more steps…
Raise 4 to the power of 2.
G=1653.8(50)⋅0.00000001
Multiply 53.8 by 50.
G=162690⋅0.00000001
Cancel the common factor of 16 and 2690.
Tap for more steps…
Factor 2 out of 16.
G=2(8)2690⋅0.00000001
Cancel the common factors.
Tap for more steps…
Factor 2 out of 2690.
G=2⋅82⋅1345⋅0.00000001
Cancel the common factor.
G=2⋅82⋅1345⋅0.00000001
Rewrite the expression.
G=81345⋅0.00000001
G=81345⋅0.00000001
G=81345⋅0.00000001
Multiply 81345⋅0.00000001.
Tap for more steps…
Combine 81345 and 0.00000001.
G=8⋅0.000000011345
Multiply 8 by 0.00000001.
G=0.000000081345
G=0.000000081345
Divide 0.00000008 by 1345.
G=0
G=0
G=0
Solve for G 0.000000011233=(G(53.8(50)))/((4.0)^2)

Solving MATH problems

We can solve all math problems. Get help on the web or with our math app

Scroll to top