A(4000)=p(1+0.002512)nt
Rewrite the equation as p(1+0.002512)nt=A(4000).
p(1+0.002512)nt=A(4000)
Divide 0.0025 by 12.
p(1+0.0002083‾)nt=A(4000)
Add 1 and 0.0002083‾.
p⋅1.0002083‾nt=A(4000)
p⋅1.0002083‾nt=A(4000)
Divide each term in p⋅1.0002083‾nt=A(4000) by 1.0002083‾nt.
p⋅1.0002083‾nt1.0002083‾nt=A(4000)1.0002083‾nt
Cancel the common factor of 1.0002083‾nt.
p=A(4000)1.0002083‾nt
Move 4000 to the left of A.
p=4000A1.0002083‾nt
p=4000A1.0002083‾nt
Solve for p A(4000)=p(1+0.0025/12)^(nt)